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When acted on by sufficiently powerful Ii 
under ordinary conditions can experience % 

ht beams, gases which transmit radiation 
reakdown. A survey of experimental data 

and theoretical information on this phenomenon will be found in [s] , one of whose 
aspects is the shifting of the absorption zone to meet the oncoming light beam. 

The present paper concerns the motion of the gas and heating behind the absorption 
wave propagating solely as a result of one of the mechanisms noted in [I] (the hydro- 
dynamic mechanism). The mechanism consists essential1 in the followin : a shock 
wave begins to propagate from the breakdown zone, whit 1s characterize 4. ! by the in- 
tensive release of energy and a considerable increase in pressure. Ionization occurs at 
the shock wave front, and this makes possible the absorption of radiation as a result of 
the braking mechanism. 

The heating of the as 
absor tion (because o 

B 
B 

which results in excitation of the atoms and ions also produces 
the photoelectric effect from hi hly excited states). If the gas 

ahea of the front is cold and nonionized, then it usua ly transmits radiation in the H 
optical range. Thus, the shock wave front marks the boundary at which radiation ab- 
sorption begins (i. e. it initiates absorption and energy release due to absorption). There 
are, of course, other factors which can produce such shock waves (electrical discharges, 
vaporization of the surface of a solid body under one type of radiation or another, etc. !. 

Absorption of radiation at small distances from the shock wave front produces a deto- 
nation wave [‘I. 

If the radiation flux incident an the shock wave front varies, then the detonation wave 

P 
ropagates with a variable velocity. it is of interest to consider gas motions behind the 
rants of such shock waves. With a power law of variation of the radiation flux with 

time, q - Ia , the velocity of the detonation wave also varies according to a power law, 
and the problem is self-similar. 

It is also interestin 
f 

to consider gas motion in cases where the radiation is absorbed 
at distances compara le with characteristic dimension of the problem, and even at dis- 
tances such that the radiation passes almost freely through the heated gas behind the 
shock wave front (through optically thin gas layers). 

1, The radiation absorption coefficient X due to free-free electron transitions in the 
ionic field depends on the temperature and density in the complete-ionization zone in 
the following way: 

x - a-sT-‘Jap cv 8’ap-‘:$I. 

Here 6 is the quantum energy, T is the temperature, p is the pressure, and p is the 
densi 

In t e multiple-ionization zone where absor tion also occurs by way of the photo- x* 
electric effect from highly excited atomic an Bionic states the function x (T, p) can 
also be approximated by means of a power function, 
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Here k, is a numerical coefficient and v is the specific volume. 
For an arbitrary optical thickness of the gas behind the shock wave front the problem 

is self-similar onl 
7 

in the event of a power dependence of the radiation flux qon the 
time, i.e. only I q - ta ; moreover, the exponent a must have a certain s ecific 

case of a completely ionized gas, when b - -*/a, a = -a a,, we have P 

Self-similarity also requires, of course, that the piston pushing the gas move accord- 
ing to a certain power law u a tg, where g is related to a (for t_z = “1s we have g = ‘h). 
However, since the gas is receiving energy from an external source (radiation absorp- 
tion), it is possible to have motion with a stationary piston, a piston moving backwards 
(according to the same power law), and even with escape into a vacuum (this is a self- 
maintaining, though not necessarily a detonational, state). 

In the se f-srmilar problem the optical thickness of the gas la 
wave is always constant. However, by varying the parameters o r; 

er heated by the shock 

initial density &of the, medium in which the shock wave 
the problem (e. g. the 

t: 
ropagates) it is possible to 

trace the changes in the pattern of motion accompanying t e transition from one limi- 
ting case to another, i.e. from a detonation state in which all the energy is released 
almost directly behind the shock wave front, to a state in which the gas absorbs only a 
small part of the radiant energy incident on the wave front. 

Let us consider the case of a low initial density where the region behind the shock 
wave absorbs the incident radiation weakly, and where we can neglect the change in 
the luminous flux in the heated region in comparison with its value at the shock wave, 
i.e. where we can set 

r8 q (m, t) = r$ q. = const (1.2) 

The exponent a in this problem is arbitrary. 
computations for a = 0. 

For simplicity, we shall carry out our 

The system of equations describing the motion of the gas with allowance for radiation 
absorption is in this case of the form 

g+r+=o, a ar= u, ar” 
-J-g = vv 

v~+yP~=(r--l)q.k,(~)8vapb 
(1.3) 

Here u is the velocity, m is the mass Lagran e coordinate, Y is the adiabatic expo- 
nent, v rl_ $,2,3in the place, cylindrical, an f 
for an unfocused beam, & = v - 

spherical cases, respectively, 6 =.O 
1 for a focused beam, and P is the Euler coordinate. 

Natura1%* . 
relation (1.2) and therefore the solution of the problem in the case of 

focused ra rauon, is valid only for those instants when the radius of the shock wave 
considerably exceeds the minimum focusin 

a 
radius of the incident radiation 

Let the shock wave move initially throug a cold, stationary, homogeneous gas, 

p (m 0) = u (m, 0) = 0, v (q 0) = v, = const (1.4) 

We introduce the self-similar variables v, P, u, R, zgiven by the formulas 

v = VJ, p _ z-2(cI v+U $w -W/v ( k,,q,r,~)-ai ’ ‘P (1.5) 
u = t-l+ ! vvr-” / ” (k,q,ro8)‘i ! ‘u, r = t-C ’ “vii-t) ’ ” (k,q,r,“)-f “R 

z = mfv,,’ ( k,q,r,,8)d 

f= 
av+2b- bv-2--6 (3 - 2b) v d V 

2 (b - 1) - 6 ‘=2(b-I)--* = 2(b -1)-b 
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Substituting them into (1.3)) we obtain the system of self-similar equations 

CXU) +Ry--1P’ = (1 +c/v)lJ, Rr-1 R’ =V (W 
c (xR’ -R/v) =U 

cz (VP’ + yPV’) = 2 (1 + c / v) PV + (y - l)R-TaPb 

The boundary conditions of the problem are either the pressure at the piston or its 
velocity, 

P (0) = P, or (U (0) =5 U,) 

and the relations at the strong shock wave front. 

(1.7) 

V r---i 
=q’ 

R+?#‘“, u =--2!!?2, P’TL(_5_)a 
?.+I 0.8) 

Here r,is the self-similar coordinate of the shock wave chosen in the course of solu- 
tion of the problem in such a way as to ensure that 
In the case of escape into a vacuum (PO = 0) 

P(O) =pa(or I? (0) = ua). 
or of a symmetric problem (U 

single set of self-similar profiles of problem (1.6) - (1.8) yields the solution f 
= 0) the 

or all the 
parameters k,, q ,,, u, for which assumption (1.1) holds. 

Fig. 1 Fig. 2 

Figure 1 shows the distributions of v, P, .u, R, PV’ with respect to the self-similar 
variable z for the plane case with a = 0, a = - 6/s, b = - %, +J =‘/s for U0 = 0, 
for a stationary piston (the motion is maintained solely by energy release through absorp- 
tion). Figs. 2 and 3 show the same functions in the case of cylindricalsymmetry for 
focused (6 = -1) and unfocused (6 = 0) beams. 

2. For an arbitrary optical thickness the system of equations describing the motion 
of a gas with allowance for radiation absorption in the plane case is of the form 
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a5 

Fig. 3 

Let us introduce the self-similar variables v, P, 
u, Q, xby means of the formulas 

p = $1 +a(=-l)l /c q;%+” / c,$:p 
(2.2) 

u = tg&-w / c k-‘tc 
Q u, Q = Qd”Q 

I +tb)/c 5 = mt go -21 c 

k* 9 c=3a-b-2 

g = [a (a -b-l) - 11 /c, s = [b--a ---a (a +b)l/c 

System (2.1) becomes 

~3 (VP' + yPV') + {I - 3y +cc[2a - 1 - y(2b + 1)I)PvIc = 
= (y - 1) QVPb, Q' = QV=Pb 

P' + SXU -+ [a(&-b-l) - I] u / c = 0 (2.3) 

SXV’ - I3 +a(2b + 1)llr / c i U’ 
The condition v (m, 0) = PO yields 

a = -3 / (2b + 1) (2.4) 

The initial and boundary conditions become a system of boundary conditions for 
Equations (2.3), 

V(oo) =‘vo, U(oo) =P(oo) =o, Q(m) =I 
P (0) =P, (or U (0) = U,) (2.5) 

The relations at any strong discontinuity which may arise in the problem are of the 
form 

v2= r(Pr+. s%rVr) - ((s%rVr - rP,)2 - 2 (73 - 1) szr (92 - Qr)j”’ 

(r + 1) ha 

P, = P, + 9x12 (V, - V,), u2 = u, + sx1 v2 - VI) (2.6) 

Where the subscripts 1 and 2 refer to quantities to the right and left of the discontinu- 
ity coordinate x = xl, respectively. We note that Q, # Ql only in the case of the 
limiting (detonation) 

P 
roblem. 

The presence of a ree parameter (the self-similar strong discontinuity coordinate) 
enables us to satisfy five boundary conditions (2.5) for four equations (2.3). 

According to our formulation of the initial problem, the shock wave moves through 
cold stationary gas, initiating the absorption of radiation. If its self similar coordinate 
is z = xl, then 

v = va, P = C' = 0, @=I for z>rl (2.7) 
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Problem (2.3) - (2.5) can be solved by choosin 
(01 u (0) = U,) . However, B as will be shown be 

z1 in such a way that P (0) = P,, 
ow, this can be done only for 

P& P, (VJ (or &I > u* (VJ). Th e asterisk subscript indicates certain “critical” 
. 

3. Numerical computations of system (2.3) under boundary conditions (2.5) in the 
general case of a finite nonzero V,show that a solution continuous over the interval 

(0,x,) with a single shock wave at the point 
2 s z1 can be constructed only for some (not 
211 )PO.. The qualitative behavior of the inte- 
gral curves of system (2.3) in the plane 2, P 
1s shown in Fig. 4. The solid curves represent 
the solutions of boundary value problem (2.3) - 
(2.5) for various PO; the broken curves repre- 
sent the integral curves and those portions of 
the latter which do not satisfy boundary condi- 
tions (2.7). 

Fig. 4 

The character of the singular points D and B 
can be determined by reducing system (2.3) to 

.T within quantities of a higher order of smallness 
in the neighborhood of each singular point to a 
single equation of the form 

fi _ allv + alah 
dh - u;1v + aah (3.1) 

where h = z - z,,, zp fs the coordinate of the singular point, and the quantities a,,, 
and Z~ can oe expressea In terms of the values of the functions if,,, P,, VP, Qp at 
this point by means of the formulas 

(3.2) 

TUP 
au= -(f+l)stp’, an=k--%% Y 99 

zp =. (TP, / v9)‘k k=i+2b 

A characteristic feature of this problem is the existence of solutions with two discon- 
tinuities and a singular point of the saddle-point type (point B in Fig. 4) between them. 
The sin 

All o ? 
ular point D is a logarithmic node. 
the solutions with P, > PA which lie above the curve ABCcontain on1 

one discontinuity whose self-similar coordinate is 5 > 5, and deoends on P,, . CT ne 
such solution with V, = 2, U. E O! a = -I/o, be= -'/g, y = '1~ is shotin in 
Fig, 5. The solutions With p. < pA have one discontinuity in common at the point 

pass throu 
(zhiz ?&y be weak or sufficiently smallpg) on the segment [xD, zel whose coordi- fg 

h the singular pointB, and experience a second discontinuity 

nate now de 
P 

ends on PO. 
We there ore see that “the acoustic point Bdoes not transmit perturbations travellin 

from the left-hand edge” (from the point 3: I 0)) and that the first shock wave whit Yl 
initiates absorption propagates for all values of P, from the interval(0, PA)with a 
sin le velocity which depends only on the initial gas density p0 and on the intensity q. 
of %e incident light beam. Although the situation is in this case analogous to the prop- 
agation of a detonation wave, the analogy is not complete, since the energy in the case 
under consideration is released at sotne (possibly considerabl,e) depth, rather than in an 
infinitelv thin layer behind the shock wave front. Only as V,, --t co does the quantity 
@B -’ sC) tend to zero, the points Band C drawing closer together. In the limiting 
case the configuration consisting of the singular point B and theshock wave at the point 
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i f I x I I 

-I 

1 
‘ 

L 

Fig. 5 Fig. 6 

5 = XC becomes a sin le detonational discontinuity 
(2.6) with Q, = 0 and %e coordinate 

Xd =- 
12 (7’ - 1) V,“l” 

a (3.3) 

-! 

I 
/ 

!D 

Fig. 7 

The second discontinuit with the coordinate 2 <Qwhich depends on the value of 
p,,is preserved. The se1 -slmrlar profiles in detonational states of absorption wave pro- fy. . 
pagation for severalP,are shown in Figs. 6 and 7 (a = -s/s, b = -a/,, y = s/s, 
a = a/*, V, = 1). . 

Let us cite some values of the pressure P,at the point 2 = 0, and also the values of 
;he self-similar cBoordinate x8 in the case of a stationary iston (U, = 0) for Q = - O/s, 

= - Vs. y = /a for several values of the initial specl ic volume V,: fp 

2== .O%O 0.0206 10 0 05513 O $6 A’:;5 
z,= a JO360 0.0600 010135 01392 O:513 

The quantities P (0, f) and m, (t) in the same case can be determined from the 
relations 

P (0, I) = tq,% kq-‘18 P, (VJ 

m, (4 = zI (V,,) t8/a q,‘/ak,“l~ (3.4) 

Recalling the function P, (V,,) in the limiting cases, we obtain 

for V, 4 4 

(3.5) 

(3.6) 
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4. We have not yet dealt with the question of what causes the propa ation of the 
shock wave; we have sim ly assumed the existence of a certain piston. L t us now con- 
sider this matter and the ormulation of P 

Let the surface of a solid be acted on ! 
robfems in the absence of a piston. 
y a radiation fiux which vaporizes this surface, 

The dis 
sucroun J 

ersing vapor constitutes the piston which pushes against the gaseous medium 
mg the body. If the amplitude of the resulting shock wave is sufficiently large, 

then marked ionization takes place at its front, Radiation absorption begins not at the 
vapor boundar but rather at the shock wave front. Some of the radiation passes through 
the gas heate 8 rn the shook wave and continues to vaporize the material and to heat the 

Let the vapor be heated to such a de ree that we can neglect the heat of vapor- 
~~!t% Q. in comparison with the enthalpy oc the maximum vapor temperature T,and F 
also the phase nansition temperature T,as corn 

If the absorption coefficients of the vapor an % 
ared with Tm. 
medium depend exponentially on the 

temperature and density and if the exponents for the vapor and medium ace equal (e.g. 
if both the vapor and the medium behind the shock wave are corn letely 
the problem is self-similar. The problem has already been corm ered fs,s) in the abs- *B 

ionized), then 

ence of a medium with a shock wave propagating through it (i.e. in the-case of disper- 
sion into a vacuum), 

The same approach can be used to consider the action of radiation on an initially cold 
stationary gas in which stcong shock waves arise at the boundary of two media of diffec- 
ing de~iti~~rand~~(oc simply at some point of a homogeneo~ medium in the special 
case where these two densities are equal), If their amplitude is sufficiently large, then 
the gas behind them is ionized and begins to absorb radiation incident on the fronts of 
these shock waves (if the sources are situated an opposite sides) or on the front of one of 
the shock waves (if there is only one source). 

The initial push which initiates these waves can be produced by detonatin 
foil or vaporizing a piece of foif by irradiation. 

a piece of 
With an initial “push” of su fcoient 4‘ 

amplitude to give rise to shock waves and radiation absor 
meters of motion do not depend on the properties of this” $ 

tion behind them, the para- 
etonator” for times much 

larger than the initiation time, since the total energy contained in the region between 
shock waves and released there as a result of absorption of radiation from the external 
source is much larger than the initial detonator energy, This problem is self-similar. 
Self-similarity conditions (2.2) are preserved in this case. Equations (2.3) are of the 
same form. The boundary conditions are 

V(w) =v,, V(--00) GV,, Q(M) =i 

u (Qo) = u ( -00) =P (co) =F f-m) =o 

(we assume for simplicity that the radiation is coming from one side only). 
The problem of vaporizatian of a solid with allowance for the resisance to vapor 

dispersion and radiation absorption by the medium can be considered as the special 
ease of the problem for V, = 0. 

It is clear that this probIem involves two boundary conditions more than the problem 
of Sect. 2, One of me free parametecs which can be used to satisfy one of the additional 
boundary conditions is the self-similar coordinate of the shook wave uavellin 
the dense medium (in the same direction as the light beam) and initiating ca F through ration 
absorption in the latter. As the second free parameter we can take the jump in density 
at the point 2 = 0 (as will be shown below, however, a contact discontinuity is impos- 
sible). 

If the point z z 0 is singlulac, i. e. if 

(Y - 1) Q (O)Va-r (OfPa-r (0) = - 2 I k (44 

and if P (0) > 0, then the solution in the neighborhood of this point is of the form 
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to within quantities of a higher order of smallness, 
Here Ais an arbitrary constant and the zero subscript refers to quantities at the point 

s = 0. 
If P (0) = 0, then the singular point z = 0 is also a node, and its solution in its 

neighborhood to within quantities of a higher order of smallness is of the form 

u = uo + rzv (I.- b) I (b - u), P= U#lk 

(4.4) 

0 = (i - a) (t - 2k-l) / ys 

Let us assume that there exists a solution such that 

PO 7 0, v,<oo, (y-i)QoVo~-1Po~-1#-2/~ (4.5) 

In this case we obtain the following approximate equation for determining V (2) in the 
neighborhood of the point z = 0: 

dv (I- ‘r) QoVoaPob - 2PoVo / k A1 
-= 

dx rposx 
=:- 

X (4.6) 

which yields 

v = Al In (cx) (4.7) 

This contradicts our initial assumption (4.5). 
fulfilled at the point z = 0. then 

This means that if relation (4.2) is not 

v (0) = 00, P (0) = 0 (4.8) 

Let us assume that there is a contact discontinuity at the point z = 0 i.e. that 

v(+O) #V(-O), p (+ 0) = p (- O), u (+ 0) = u (- 01, 

Q (+ 0) = Q (- 0) (4.9) 

It is clear that at least one of the points I - -I- 0 or I =. m 0 in this case is non- 
singular,i.e. such that relation (4.2) is not fulfilled there. Let this be the point 
t = + 0. Then according to the above result (4.8), we have 

v (+O) = 00, P (+o) = 0 (4.10) 

According to (4.9) it is also the case that P (- 0) = 0, and from (4.8) we find that 
v (--00) = 00. 

We therefore conclude that there is no contact discontinuity, i. e. that 

P (+O) = p (-0) = 0 (4.11) 

Q. E. D. 
If V (0) < 00, P (0) 7 0, then a shock discontinuity is also impossible at the point 
2. = 0, since 

vs = Vl (Y - 1) / (Y + i) + 2YZ-5 / f(Y -t i) $91, Qa = 91 
P, = PI + 9xa (V, - V,), us = 111 + sz (V, - V,) (4.12) 

V, = 00 for x = 0 
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The case P (0) = 0 again yields 

Y ($-0) = V (-0) = 00 (p (+o) = p (-0) = 0) 

i.e. there is no contact discontinuity; if Pt (0) = 0, then Vs (0) = 00, and 

r--i %Pl -- 
va--f+iv1+(~+-i)s29=w 

Thus, the second free parameter is the quantity A in expression (4.3) or (4.4), and 
a weak discontinuity exists at the point I = 0, 

le solution of the problem of an absorption wave at the boundary between two 
differing densities appears in Fig. 8 for the case e = - ‘Is, b =---S/e, y = b/~, 

45* The dots represent parameters at the shock wave propagating in the 
direction opposite to the oncoming radiation flux. 

Fi 
shot a 

ure 9 shows the pressure P, at the forward edge of the heating wave and at the 
wave, which has travelled into the interior of the material, as a function of the 

initial density KI of the medium. The same 
figure shows the behavior of P (0) = PO , i.e. 
the pressure at the stationary boundary for the 
problem of motion of the absorption-initiating 
shock wave away from this surface (U (0) = 0). 

0 a5 X” 

Fig. 8 Fig. 9 

The quantities P, and P(0) practically coincide for high densities of the medium 
(Vx < 1) . This is because practically no radiation passes through it (this is obvious 
from Fi 
tionary % 

. 9, which shows the dependence of the radiation flux Q (0) = QO at the sta- 
oundary of the medium). For very high-density media (V, < 1) both quanti- 

ties PO and p (0) merge with the function given by the solution of the problem of 
propagation of a detonation wave with a variable detonation rate (when all of the 
energy is absorbed in a narrow layer near the shock wave front), 

PSI = P (0) = A (yf Vx-l/s (A = 0.112 npz y 2= b/s) (4.13) 

According to Fig. 9 and relation (4.13) the pressure increases with increasing densi- 
ty in a detonation state and in a state such that the mass of the energy release zone is 
comparable to the entire mass encompassed by the shock wave front, but with the med- 
ium still practically opaque. On the other hand, in the case of low densities (V&=-i) 
the ressure decreases with increasing density. 

TL 1s is attributable to the fact that the pressure drop is due solely to the dispersion of 
the radja~on-hated “vapor”, while the medium is almost ~~~~ ~a~parent and resists 
dispersion only slightly. The slight absorption in the medium reduces the energy supplied 
to the vapor (this screening effect reduces the vaporization intensi and the ressure at 
the “va x’ orized surface”). The minimum pressure is attained with lmensio &ss densi- 
ties of 5, e medium on the order of unity, i. e. for densities of the medium close to the 
average vapor density in the case of dispersion into a vacuum I*]. 
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STATISTICAL MECHANICS OF QAS SUSPENSIONS. 
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A statistical theory of streams of systems of the gas + suspended particles ty 
sed. The theory is based on the assumption that the particle concentration R 

e is propo- 
uctuations 

are isotropic. The structure of the equilibrium states is considered in a gradientless 
approximation; the mean-square values of the pulsations of the dynamic quantities and 
the transfer coefficients are estimated; the size of the local inhomo eneities is deter- 
mined. Equations for the energy of the pulsations of the dispersed p f . ase in various 
directions are obtained; an energy equation complementing the system of dynamic 
equations given in [*I is derived. 

The statistical characteristics of random 
suspension sneam can be found by solving Jr 

ulsating motions of the phases in a gas 
e system of integrodifferential spectral 

equations obtained in 1’1. This system is quite complicated. It is therefore expedient 
to make use of some simplifying hypotheses; this makes it possible to reduce the sto- 
chastic equations of 1’1 to the equations of 1.11. 

1, The pultatfon equatfonr. Let us consider the motion of a monodis 
gas suspension under the’assumption that the time and space scales of variation of t g 

erse 
e 

mean parameters describing the flow (of the 
red with the scales of the local pulsations. 

“dynamic quantities”) are lar e as compa- 
This enables.us, amon! other &ngs, to 

carry out our computations in a coordinate system m whrch the ve ocrty of the dispersed 
phase in the volume element under consideration is equal to zero. 

Let us make use of the most “fine-grained” description of the pulsations of dynamic 
quantities permitted by the notion of phases as interacting interpenetrating continuous 
media, i. e, let us choose as our characteristic physical volume (the “averaging scale” 
in the terminology of [l],the specific volume 0 
In accordance with the above assum 

= la of a single suspended particle[l,s]_ 

quantities with res ect to time and 51 
tion we neglect the derivatives of the dynamic 

derivatives of the !l 
e coordinates as compared with the corresponding 

uctuations of these quantities, This a 
K. . 

proximation is analogous in 
meaning to the familiar hydrodynamic approximation of metrc theory 121.We then 
have the following equations for the pulsations of the mean parameters (the notation is 
that of I’] 


